26.7 C
New York
Tuesday, June 15, 2021

MRI Scans More Precisely Define and Detect Some Abnormalities in Unborn Babies | Nutrition Fit


Summary: MRI imaging is more adept at detecting fetal abnormalities than conventional ultrasound imaging.

Source: King’s College London

MRI scanning can more precisely define and detect head, neck, thoracic, abdominal and spinal malformations in unborn babies, finds a large multidisciplinary study led by King’s College London with Evelina London Children’s Hospital, Great Ormond Street Hospital and UCL.

In the study, published today in Lancet Child and Adolescent Health, the team of researchers and clinicians demonstrate the ways that MRI scanning can show malformations in great detail, including their effect on surrounding structures. Importantly, they note that MRI is a very safe procedure for pregnant women and their babies.

They say the work is invaluable both to clinicians caring for babies before they are born and for teams planning care of the baby after delivery.

Recent research has concentrated on correcting for fetal movement in fetal brain MRI and, more recently, for imaging the fetal heart. However, there is an increasing demand to assess the entire fetus with MRI and research from King’s College London School of Biomedical Engineering & Imaging Sciences at Evelina London Children’s Hospital, have recently been able to develop a post-acquisition pipeline to motion correct and volume reconstruct images of the whole fetal body.

Lead researcher, Professor Mary Rutherford, from the School of Biomedical Engineering & Imaging Sciences said ultrasound remains the gold standard for fetal screening and indeed is complementary to these optimised MRI approaches for evaluating abnormalities of the fetal body.

READ  Nitrate in Maternal Drinking Water May Impair Fetal Growth | Nutrition Fit

“Until now, ultrasound has been the modality of choice to diagnose those anomalies. However, sometimes the ability of ultrasound to define the most detailed anatomy is limited. MRI scanning offers the potential to more precisely define malformations that could help support clinicians in their planning of care and counselling of parents”.

READ  Adult Neurogenesis May Hold Clues for More Effective Treatment of Alcoholism | Nutrition Fit

MRI is commonly used in the classification of fetal brain anomalies. Although its use in fetal body anomalies is less widely adopted, advances have led to the validation of its role in the antenatal investigation of several conditions including the investigation of fetuses with spina bifida: imaging of the fetal brain along with the spinal cord is an important factor in evaluating which patients could benefit from fetal surgery.

For fetal neck masses, MRI provides a clear advantage over conventional ultrasound for assessing tumour extension and giving a 3D visualisation of the tumour’s relation to the airway.

This is a cartoon of a pregnant woman with the baby drawn in her tummy
They say the work is invaluable both to clinicians caring for babies before they are born and for teams planning care of the baby after delivery. Image is in the public domain

MRI may also be better than ultrasound for distinguishing between normal and abnormal lung tissue, and in making other diagnoses such as diaphragmatic hernia–particularly in late gestation, when doing so with ultrasound is challenging.

New approaches to imaging the fetal body with MRI allows both motion correction of the fetal images and volume reconstructions of body organs and defects. Researchers say this improves visualisation and therefore detection and characterisation of abnormalities.

The project brought together surgeons, fetal medicine specialists, radiologists and physicists to review the use of magnetic resonance imaging to investigate conditions in the unborn baby; this approach has already been integrated into clinical practice at Evelina London, which is part of Guy’s and St Thomas’ NHS Foundation Trust. Videos and images are also available for viewing.

READ  Light Activity, Such as Gardening or Walking, Preserves Women's Mobility During Aging | Nutrition Fit

Ongoing work is focused on a fully automated process suitable for clinical translation and wider dissemination into clinical practice.

About this neurodevelopment research news

Source: King’s College London
Contact: Tanya Wood – King’s College London
Image: The image is in the public domain

READ  Sleep Is Vital to Associating Emotion With Memory | Nutrition Fit

Original Research: Closed access.
Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review” by Mary Rutherford et al. Lancet Child and Adolescent Health


Abstract

See also

This shows pills flying through the air

Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review

This Review depicts the evolving role of MRI in the diagnosis and prognostication of anomalies of the fetal body, here including head and neck, thorax, abdomen and spine.

A review of the current literature on the latest developments in antenatal imaging for diagnosis and prognostication of congenital anomalies is coupled with illustrative cases in true radiological planes with viewable three-dimensional video models that show the potential of post-acquisition reconstruction protocols.

We discuss the benefits and limitations of fetal MRI, from anomaly detection, to classification and prognostication, and defines the role of imaging in the decision to proceed to fetal intervention, across the breadth of included conditions. We also consider the current capabilities of ultrasound and explore how MRI and ultrasound can complement each other in the future of fetal imaging.



Source link

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

22,036FansLike
2,813FollowersFollow
SubscribersSubscribe
- Advertisement -spot_img

Latest Articles