18.7 C
New York
Saturday, April 10, 2021

Octopuses Have Two Alternating Sleep States | Nutrition Fit


Summary: It is well-known octopuses change their color while they sleep. A new study reveals the color changes characterize two distinct sleep states, “active sleep” and “quiet sleep”. The findings shed new light on the evolution of sleep.

Source: Cell Press

Octopuses are known to sleep and to change color while they do it. Now, a study publishing March 25 in the journal iScience finds that these color changes are characteristic of two major alternating sleep states: an “active sleep” stage and a “quiet sleep” stage. The researchers say that the findings have implications for the evolution of sleep and might indicate that it’s possible for octopuses to experience something akin to dreams.

Scientists used to think that only mammals and birds had two sleep states. More recently, it was shown that some reptiles also show non-REM and REM sleep. A REM-like sleep state was reported also in cuttlefish, a cephalopod relative of the octopus.

“That led us to wonder whether we might see evidence of two sleep states in octopuses, too,” says senior author Sidarta Ribeiro of the Brain Institute of the Federal University of Rio Grande do Norte, Brazil. “Octopuses have the most centralized nervous system of any invertebrate and are known to have a high learning capacity.”

To find out, the researchers captured video recordings of octopuses in the lab. They found that during ‘quiet sleep’ the animals were still and quiet, with pale skin and eye pupils contracted to a slit. During ‘active sleep,’ it was a different story. The animals dynamically changed their skin color and texture. They also moved their eyes while contracting their suckers and body with muscular twitches.

READ  Work Addiction Can Be Harmful to Mental Health | Nutrition Fit

“What makes it more interesting is that this ‘active sleep’ mostly occurs after a long ‘quiet sleep’–generally longer than 6 minutes–and that it has a characteristic periodicity,” Ribeiro says.

READ  Exercise Boosts Blood Flow to the Brain | Nutrition Fit

The cycle would repeat at about 30- to 40-minute intervals. To establish that these states indeed represented sleep, the researchers measured the octopuses’ arousal threshold using visual and tactile stimulation tests. The results of those tests showed that in both ‘active’ and ‘quiet sleep’ states, the octopuses needed a strong stimulus to evoke a behavioral response in comparison with the alert state. In other words, they were sleeping.

The findings have interesting implications for octopuses and for the evolution of sleep. They also raise intriguing new questions.

“The alternation of sleep states observed in the Octopus insularis seems quite similar to ours, despite the enormous evolutionary distance between cephalopods and vertebrates, with an early divergence of lineages around 500 million years ago,” says first author and graduate student Sylvia Medeiros of the Brain Institute of the Federal University of Rio Grande do Norte, Brazil.

“If in fact two different sleep states evolved twice independently in vertebrates and invertebrates, what are the essential evolutionary pressures shaping this physiological process?” she asks. “The independent evolution in cephalopods of an ‘active sleep’ analogous to vertebrate REM sleep may reflect an emerging property common to centralized nervous systems that reach a certain complexity.”

Medeiros also says that the findings raise the possibility that octopuses experience something similar to dreaming. “It is not possible to affirm that they are dreaming because they cannot tell us that, but our results suggest that during ‘active sleep’ the octopus might experience a state analogous to REM sleep, which is the state during which humans dream the most,” she says.

READ  Actively Preparing or Watching Others Prepare Food Can Lead to Eating More | Nutrition Fit
This shows a sleeping octopus
This image shows an octopus in active sleep. Credit: Sylvia L. S. Madeiros

“If octopuses indeed dream, it is unlikely that they experience complex symbolic plots like we do. ‘Active sleep’ in the octopus has a very short duration–typically from a few seconds to one minute. If during this state there is any dreaming going on, it should be more like small videoclips, or even gifs.”

READ  Brain Activity Foreshadows Changes in Stock Prices | Nutrition Fit

In future studies, the researchers would like to record neural data from cephalopods to better understand what happens when they sleep. They’re also curious about the role of sleep in the animals’ metabolisms, thinking, and learning.

“It is tempting to speculate that, just like in humans, dreaming in the octopus may help to adapt to environmental challenges and promote learning,” Ribeiro says. “Do octopuses have nightmares? Could octopuses’ dreams be inscribed on their dynamic skin patterns? Could we learn to read their dreams by quantifying these changes?”

Funding: This work was supported by the State University of Rio Grande do Norte (UERN), the Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and from the São Paulo Research Foundation (FAPESP) Center for Neuromathematics.

About this sleep research news

Source: Cell Press
Contact: Carly Britton – Cell Press
Image: The image is credited to Sylvia L. S. Madeiros

Original Research: Open access.
Cyclic alternation of quiet and active sleep states in the octopus” by Sidarta Ribeiro et al. iScience


Abstract

See also

This is an illustration of astrocytes

Cyclic alternation of quiet and active sleep states in the octopus

READ  I Ain't Afraid of No Ghosts: People With Mind-Blindness Not So Easily Spooked | Nutrition Fit

Highlights

  • Octopus has ‘Quiet’ and ‘Active sleep’, with different episode duration and periodicity
  • States differ on arousal thresholds, skin color and texture, and eye and mantle movement
  • The results suggest that octopus has a sleep cycle analogous to that of amniotes

Summary

Previous observations suggest the existence of ‘Active sleep’ in cephalopods. To investigate in detail the behavioral structure of cephalopod sleep, we video-recorded four adult specimens of Octopus insularis and quantified their distinct states and transitions. Changes in skin color and texture and movements of eyes and mantle were assessed using automated image processing tools, and arousal threshold was measured using sensory stimulation.

READ  Understanding Cellular Clock Synchronization - Neuroscience News | Nutrition Fit

Two distinct states unresponsive to stimulation occurred in tandem. The first was a ‘Quiet sleep’ state with uniformly pale skin, closed pupils, and long episode durations (median 415.2 s). The second was an ‘Active sleep’ state with dynamic skin patterns of color and texture, rapid eye movements, and short episode durations (median 40.8 s). ‘Active sleep’ was periodic (60% of recurrences between 26 and 39 min) and occurred mostly after ‘Quiet sleep’ (82% of transitions).

These results suggest that cephalopods have an ultradian sleep cycle analogous to that of amniotes.



Source link

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

21,780FansLike
2,738FollowersFollow
SubscribersSubscribe
- Advertisement -

Latest Articles

Read previous post:
Vitamin D May Protect Against COVID-19, Especially in Blacks | Nutrition Fit

Higher levels of vitamin D than traditionally considered sufficient may help prevent COVID-19 infection — particularly in Black patients, shows...

Close